
N91 - 20 690 !

A Knowledge-Based approach

to Configuration Layout,
Justification and Documentation

F. G. Craig, D. E. CuRs, & T. R.
Fennel

Boeing Computer Services

M/S JA-74

Huntsville Artificial Intelligence
Center

O 1990 The Boeing Company

Abstract

This paper describes the design, development, and

implementation of a prototype expert system which could

aid designers and system engineers in the placement of

racks aboard modules on Space Station Freedom. This type

of problem is relevant to any program with multiple

constraints and requirements demanding solutions which

minimize usage of limited resources. This process is

generally performed by a single, highly experienced

engineer who integrates all the diverse mission

requirements and limitations, and develops an overall

technical solution which meets program and system

requirements with minimal cost, weight, volume, power, etc.
This "systems architect" performs an intellectual

integration process in which the underlying design
rationale is often not fully documented. This is a situation

which lends itself to an expert system solution for enhanced

consistency, thoroughness, documentation, and change
assessment capabilities.

1.0 General Configuration Definition Issues

One of the major issues faced by any aerospace program is

the need to consistently apply requirements, constraints,

and resources to optimize the layout of equipment in an end

item deliverable piece of hardware in the midst of changing
environments. The change mandates can result from

changing customer requirements, newly derived

requirements, reduced program budgets, technological

influences or personnel changes. All these changes tend to

impact engineering processes, often rendering current

approaches inappropriate or current solutions inadequate.

In the remainder of this section we present a list (by no
means exhaustive) of general issues which must be faced

throughout a program's life cycle :

• Fleeting expertise : Turnover of domain experts

represents a serious drain on program continuity and

often causes work to be adversely impacted since

significant portions of domain knowledge and program
history often reside with individuals.

• Productive use of resources : Much layout work is both

repetitive and resource intensive in nature. Allowing for

automation of such repetitive tasks to be accomplished

early in the process results in more resources being
available for *real" engineering work to be performed

later. This is usually a direct result of complimenting

C. M. Case & J. R. Palmer
Boeing Aerospace & Electronics,

Huntsville Division

M/S JY-33

P.O. Box 240002

Huntsville, AL 35824-6402

all rights reserved

engineering expertise with tools which allow problems to
be solved at a more abstract level and to off-load the

repetitive portions of the task to the automated process.

For example, engineering resources may be diverted to

cost proposed changes, document accepted changes, and

implement new procedures. Because of this type of

required reaction, program continuity and productivity
can be affected.

• Documentation of engineering rationale : All major

programs have periodic requirements to review progress

and to answer not only the question of "What has been

done?", but also "Why was it done this way?", and "Why

can it not be done this way?". The last two questions

require the documentation, presentation and defense of

engineering rationale. The problem is to provide a sound

defense in areas where adequate documentation is

generally missing, the expertise may have been lost, or

rules may not have been codified, consistently applied,
or documented.

• Multi-discipline inputs : Decisions made during the

configuration process typically originate across several

disciplines and organizational boundaries. Disciplines

may or may not be aware of the impact of their decisions

on other disciplines. These multi-disciplinary inputs to

the engineering process highlight the need for a uniform

approach to acquiring and representing those inputs.

• Explicit decision parameters and criteria : For

engineering problems of any significant complexity,

there is a need for the consistent application of clearly

defined problem parameters and dynamic criteria to the

engineering process. This is particularly true when

these parameters and criteria come from various

disciplines.

• Limited alternatives : Often the iterative engineering

process is not fully utilized beyond a baseline

"satisficing" solution (where the result is not optimal

but merely satisfies most of the criteria). Little time is

left to consider alternative analyses, configurations, or

development paths. Better options may be overlooked

because no tool/capability exists for quickly modelling

and analyzing engineering alternatives.

• Problem of scale : Unfortunately, major program

setbacks often occur because engineering solutions which

worked well for small problems (or subsets of the larger

problem) do not scale up well. This is particularly true

when manual engineering approaches which were

controllable and acceptable for the smaller problem are

applied to large integrated programs.

392

As mentioned, the above list is not intended to be

exhaustive, but is presented to serve as a reference for the
next section.

2.0 Rack Layout Problem Description

As an initial test problem we have selected the Space Station

Freedom module configuration task. This effort is similar

to that required in many aerospace configuration layout

applications in terms of complexity, constraints, and

resources. It is above average in the number of expected

major changes and long period of implementation. These

factors make the configuration problem an ideal candidate

for a knowledge based system.

The particular test domain area is that of rack placement

aboard station modules. The racks provide the physical

packaging for station services and functions. The objective

of the rack placement process is to position a group of racks

aboard modules in a configuration that minimizes

utilization of resources, optimizes operational efficiency,

and meets as many requirements and constraints as

pussib]e. The rack layout problem is representative of

various configuration layout problems faced within many

aerospace programs. Currently three other potential

applicatious for this type of system have been identified

within Work Package 1 of the SSFP, and it is expected that a

number of additional spinoff applications will surface.

Also, work performed on this project could be applied to

areas external to the SSFP (other suggested areas include

the outfitting of Commercial Aircraft and the Manned Mars

Mission).

We are currently researching knowledge-based systems

approaches to aid in this problem. The purpose of the

research is to attempt to overcome the following perceived

problems.

Fleetin2 Expertise : Currently, only one person in the

Space Station program is identified as an "expert" on

rack placement.

Claim : Development of an expert system to document the

analysis, criteria, and engineering processes used by

the expert will allow knowledge needed to solve the

problem to be preserved and to be available for review

by "non-experts'.

Productive use of resources : The current manual

approach to this process is quite time consuming and

labor intensive. Rack layout reconfiguration for the

station must be performed in step with other changes to

the program. Due to lack of time, changes to rack

configuration often represents an "acceptable" rather

than an "optimal" solution.

Claim : The expert system is expected to significantly

reduce the amount of time required to produce a new

configuration. Additionally, the rules and procedures

used by the system will be applied consistently through

the automated program. Also, the expert system doesn't

"forget" the rules or procedures during periods when

the expert is busy with other task. Indeed, such an

expert system could be used to train less skilled

personnel to perform the task and can be used by the

expert to explain the required analyses and procedures

for the rack placement process.

Defense of englneerinq rationale : SSFP has a

requirement for periodic reviews where design

decisions must be justified.

Claim: In a rule-based system, the engineering rationale

for a particular configuration is implicit in the set of

rules used to generate that configuration. This

engineering rationale provides placement justification

and explanation. One of the objectives of the current

work is to extract intelligible rationale from the set of

rules used to generate the configuration.

Multi-discipline inputs: A large number of constraints

exist between racks within and across modules. When

these constraints are imposed on a large number of

racks, a difficult constraint problem emerges. This

problem is compounded by the fact that these

constraints are imposed by different domain areas (such

as power, thermal, cost, safety, etc.) and may be

physical, functional, or operational in nature.

Claim : Experts from all applicable domain areas

provide input to the rules and procedures used for the

automated placement process. An additional advantage

is that a unified approach to the acquisition, analysis,

and representation of this domain knowledge can be

developed and more easily verified by the experts from

the various disciplines.

Explicit decision narameters & criteria :The lack of a

uniform approach to explicitly identify applicable

parameters and then consistently apply domain rules

for rack placement hinders both the ability to quickly

produce optimal rack layouts, and the ability to provide

justification for a particular configuration.

Claim : The objects, rules, and associated parameters

can be printed, queried interactively, and dynamically

changed. This makes explicit the answers to questions
such as:

What impact did the rule

"IF

the rack is rated as 'noisy' ,

THEN

don't place it near the crew

sleeping quarters."

... have on the decision to place the

rack?

Limited alternatives : Currently, analysis of rack

configurations takes anywhere from several hours for

the simplest changes to several weeks for more common

changes. As expected, this does not leave much time for

analyzing "What if...? situations."

Claim : Once the applicable parameters have been

identified, and domain expertise has been captured, this

expert system would support the ability to "tweak"

priorities and constraints allowing engineers to analyze

alternative configurations. The comparative "goodness"

of rack configurations could be determined, and the tool

could be used to suggest or support engineering change

requests. Obviously, this does not imply that human

expertise would no longer be needed. Rather it implies

that more engineering analysis could be performed and

human intuition could be used to fuller advantage by

allowing the engineer to work at a higher level of
abstraction.

393

Problem of scale : Currently the Phase 1 SSFP calls for

only two modules and 4 nodes on the American portion
of the program. Even this first phase of the program

requires over 144 racks which must be assigned within
a full range of physical, functional, and operational

constraints. The multiplicity of constraints and the

number of racks makes a manual approach to solving the

problem nearly intractable.

Claim : While the number of racks and other "real

world" objects is expected to remain relatively constant,

it is anticipated that the number of constraint and

control rules in the knowledge base will expand. No

reliable data was available to estimate the bounds on the

number of these rules. The tool selected for

implementation set no upper bound on the size of the
knowledge base (other than memory limitations). Speed

was not a primary issue in this application, but

reasonable response time was expected. The expert

system incorporates domain expertise to control the
focussing of rules which helps to limit the solution

search (see the control layer in figure I). Additional

constraints can be easily added (or deleted) as

knowledge about the racks and their interactions

increases.

3.0 Implementation

The Nexpert expert system building tool from Neuron Data

was selected for this project because it offered a number of

desired features. Nexpert is a hybrid system supporting

the representation of knowledge in objects and rules. It

supports full inheritance and procedural attachment of
methods as well as forward and backward rule chaining

capabilities. It interfaces to user developed external

routines as well as PC databases and spreadsheets. In

addition, links to large databases such as Oracle and

Informix are supported. Within this project we are

currently a beta test site for a Hypercard/Nexport "bridge"
which allows communication between Nexpert and

Hypercard facilities on the Macintosh II platform. Much of

the explanation and training research is currently being

performed using Hypercard. Nexpert is C based, runs on a

wide range of hardware platforms, and offers a number of

relatively inexpensive delivery options.

The prototype system software was implemented using a

layered architecture to represent system knowledge (see

Figure i). This layered architecture separates different

types of knowledge and aids in development, debugging and

maintenance of the system. Chandrasekaran [Ref 3] proposes

a similar architecture in which tools might be developed for

"problem classes" such as diagnosis or design. He proposes

that particular problems within these "problem classes"

share similarities and that _generic" approaches to solving

them might be appropriate.

Data resides in the lowest layer. The data is currently

stored in a spreadsheet format, but facilities exist in the

Nexpert tool to retrieve data from a number of sources

including PC spreadsheets, PC databases, Oracle and

Informix. Data is used to support the next layer

representing objects and their associated attributes. These

two bottom layers together might be thought of as Object-

Attribute-Value (O-A-V) triplets. "Real world" entities
such as modules, racks, standoffs, utilities, etc., are

represented as objects in the system. Most of this type of

knowledge was obtained directly from SSFP documentation.

It should also be noted that this data might be obtained

during the inference process or from some external source.

This external source might well be an external routine

which calculates a value and returns it to the object. This is

analogous to attaching a "method" to as object.

The constraint layer contains all the constraint knowledge

about the particular domain under consideration. This

constraint knowledge is stored in rules and is a relatively

"flat" knowledge base since this type of knowledge is

concerned primarily with only a few _focal _ objects (see

Figure 2). This knowledge base consists of a collection of

User Interface

Figure 1 : The Expert

System Architecture

394

CONSTRNNTS

ORIGINAL PAGE IS

OF POOR QUALITY
B_L,,S_m_y Svuctur_ _ LonlWom

/ _lwfemnce _ RIn_uRoc¢_

• OPE.Al_,*- f_ / ,, u_,_,

_, f_B On.y) pea_ec_--

Figure 2 : Constraint rule hierarchy

"microscopic" rules to be used in solving the problem, and

do not embody higher level "control knowledge" which a

human expert would follow in applying the constraints.

The control knowledge (or meta knowledge) at the next level
controls the direction of focus for the constraint knowledge.

This level "prunes" the search space so that inappropriate

constraint knowledge is not considered. Control knowledge

is used to apply the constraint knowledge in much the same

way a human expert would. An interesting offshoot of this

project has been that the codification of this type of

knowledge often helps to better define the problem solving

process. This layer is also important in the

explanation/justification of design decisions since

explanations of design decisions made by the system need to

be conveyed in much the same manner as a human expert's

explanation.

The user interface represents the user's view of the system.

For this application we have designed a "point and click"
user interface in which the user manipulates racks within a

module configuration. This interface provides input to the

control layer about rack(s) to be moved. The control layer

applies appropriate constraint knowledge at the next level.

The constraint layer, in turn, obtains needed information

from the lower levels. The final result (no constraints

violated, "soft" constraints violated or "bard"

constraints violated) is passed to the user interface

where the user can query the system about the particular

decision and what support was used in making the decision.

The explanation/justification layer supports access to all

the lower levels of the architecture. Queries can be made of

objects, constraint knowledge or control knowledge.

Explanations differ in content for these different layers and

in level of detail based on the level of expertise of the user.

A more detailed discussion of this layer can be found in

[Ref l].

4.0 Issues

As with any expert system project, there were a number of

issues critical to success. Some of these issues are

described below:

Exnert availability: From the project's inception, a

"domain expert" was identified and has been available

at every step in the development process. This expert

understands the problem to be solved and is able to

articulate his method(s) for solving the problem.

Knowledge Acauisitio_l: The data required for this

project comes from both SSFP documents and domain

experts. Traditional interview techniques with the

primary rack placement expert as well as other experts
in related fields have been very successful. Domain

experts have recognized the potential utility of such an

expert system and have supported it fully. In addition

to interviews, the domain experts submitted "test cases"

for the system to solve along with their

conclusions/justifications as to why the move was good
or bad (or could/could not be made). These test cases

helped identify many weak areas in the system and

helped to build the explanation facilities [Ref 1]. Early

in the development process we began to use the system

itself to acquire domain knowledge by running test

cases against the system. This approach uncovered weak

areas in the captured domain knowledge or incorrect

assumptions. Thus, the tool itself has been used

extensively in the acquisition process.

Verification and Validation: Test cases supplied by the

domain experts as well as "working" interviews in which

the system is used to test particular rack configurations

have been used to test the system for correctness as well

as its ability to provide meaningful decision

justification. No work has been done to perform tests on

the knowledge base for rule subsumption, rule

contradiction, or cycles. Much of the system testing

will continue to be empirical in nature.

395

S.O Future work

One result of both the data acquisition and validation

activities was that a larger number of people became aware

of the project and began to look for ways to apply the work

performed in the project to particular problems in their

domain. As a result we anticipate that a number of spinoff

projects will emanate from this IR&D work. Problems

similar to the rack placement problem include resource

allocation problems in which rack resource requirements

are matched with resources supplied in the module to

maximize the resource utilization. Another similar

problem deals with the placement of payload racks

(experiments. etc) within the lab module. This task must be

performed repeatedly since experiments will continually be

moved in and out. Another spinoff of this work may be in

the training area. Much of the work being done to provide

intelligent design justification and explanation could carry

over into training new engineers on the SSF program.

As a component of a training system as well as design

justification, we plan to interface this system with

simulation systems to provide "deeper" justification or

explanation by allowing the user to perform a simulation of

a particular configuration during the design process. Adeli

[Ref 2] reports on efforts to couple AI techniques with

traditional mathematical techniques to aid in the

engineering process.

6.0 Summary

Systems incorporating AI technologies to aid design will

enhance the engineering process and will ensure that the

decisions (and rationale behind them) are available in an

intelligible format for future applications. Research in this

area and prototype systems such as the one described here

will help to clarify and define the engineering design

knowledge capture requirements.

References:

[1] Fennel, T.R., et.al, "Graphical Explanation in an

Expert System for Space Station Freedom Rack

Integration", 5th Conference on Artificial

Intelligence for Space Applications, Huntsville, AL,

May 1990

[2] Adeli, H. & Balasubramanyam, K.V., "A Novel

Approach to Expert Systems for Design of Large

Structures", AI Magazine, Winter 1988, pp. 54-63

[3] Chandrasekaran, B. "Generic Tasks in

Knowledge-Based Reasoning: High-Level Building

Blocks for Expert System Design", IEEE Expert, Fall
1986, pp. 23-30

396

